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We introduce a model representing the venous network of the leg. The network
consists of a coupled system of elastic tubes. The flow through each elastic tube is
assumed to be unsteady, incompressible and one-dimensional. The network topology,
as well as the lengths and diameters of the tubes, is based on literature data. As in the
human leg the network is composed of two sub-networks, deep and superficial, which
are connected by transverse segments. We introduce a new model for confluences
or branching points, as well as models of the valvular system and of the muscular
activity. We perform a numerical study of the transmission and reflection of waves at
a confluence. Our model valvular system imposes a privileged direction of the flow
towards the heart. Muscular activity is modelled using a modification of the tube
law of the vessel and through an inflow of blood when muscle contraction pushes
blood from the microcirculation to the veins. The model is capable of simulating
several motions such as walking, dorsal flexion and tiptoe. Numerical tests show the
physical relevance of the model, and in particular demonstrate that when the system
is excited at the foot level, a two-frequency response appears. These frequencies are
closely related to the characteristic lengths of the typical segments of the deep and of
the superficial networks. We find good qualitative agreement between experimental
and numerical flow rates, using clinical data corresponding to a single ‘tiptoe’ motion.
We make numerical predictions of the internal venous pressure at the foot level in a
valvular-incontinent system which agree with clinical observations.

1. Introduction
In the human cardiovascular system, local flow features may have global effects

on the circulatory flow. For example, flow modifications caused by atherosclerosis,
stenosis or aneurysms cause modifications of the shear stress on the vessel walls which
in turn produce changes in the mechanical characteristics of the vessels. This implies
alterations in local vessel compliance, local flow resistance, wave transmission and
consequently significant modifications of the macrocirculation (Falson et al. 1998).

Numerical simulations help to acquire knowledge about the local and global features
of the circulatory network. In particular, numerical simulations provide a useful ap-
proach for understanding the human cardiovascular system. In the past, simple models
for single vessels have been used to describe blood flow in arteries and veins. These
models include (i) lumped models, i.e. the model is spatially homogeneous, Bertram
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& Pedley (1982) is a good reference, or (ii) one-dimensional linear and nonlinear
models based on partial differential equations (Cancelli & Pedley 1985; Matsuzaki &
Matsumoto 1989; Kamm & Pedley 1989; Elad et al. 1991; Brook 1997). In all cases
these models involve averaged quantities (area, velocity and pressure).

Another possibility is to perform a three-dimensional numerical analysis which
would provide a very detailed view of local flow features such as flow recirculation,
shear stress or tracer transport. However, extensive computational resources are
necessary and a fully three-dimensional approach of a venous or arterial network
would be prohibitively expensive on present-day computers, at least for the frequent
and diverse simulations that a systematic study of the leg hemodynamics would
require. The computational study of Stokes flow (Heil & Pedley 1996) or Navier–
Stokes flow (Rosar & Peskin 2001; Marzo, Luo & Bertram 2005) through a collapsible
tube is indeed a task of large magnitude. The three-dimensional approach remains
nevertheless necessary to understand the real flow behaviour in vessels and could
be coupled with zero and/or one-dimensional models (Formaggia et al. 1999, 2001;
Fernandez, Milisic & Quarteroni 2005).

The elementary lumped models of circulatory networks considered in the literature
are based on the electrical analog of the system (Westerhof et al. 1969; Avolio
1980). In this approach each vessel is modelled by a basic element composed of
resistances, inductances and capacitances. Researchers were able to simulate the
human macrocirculation by connecting in a network several of these elements.
Although these networks can be complex, their numerical computation is fast and
effective. The pitfall is that they are unable to take into account important features
such as wave propagation along elongated vessels. Another important drawback
is that it is often difficult to make a quantitative connection between measured
mechanical properties (e.g. compliance) and model results. In spite of that, they are
still used to prescribe boundary conditions and for multiscale modelling (Formaggia
et al. 1999; Quarteroni & Formaggia 2003).

An alternative to the lumped model is a network of tubes or segments, each
described by a spatially one-dimensional system of partial differential equations. The
model we present in this paper is of this type. Most of such models are built using
one-dimensional continuity and momentum equations (Stergiopulos, Young & Rogge
1992; Olufsen et al. 2000a; Ozawa et al. 2001). A more sophisticated alternative
approach is to use the method of characteristics (Sherwin et al. 2003; Wang & Parker
2004) which can compute linear or nonlinear solutions for wave motion in arteries.
We note that, in the arterial case, the problem of the direction of the characteristics in
the hyperbolic formulation is simplified by the relative weakness of backflows, while
in the venous case there may be in exceptional circumstances both backflows and
large velocities that make the direction of characteristics uncertain.

Experimental observations of the venous network show differences with the arterial
one: the veins are more compliant so the rigid or quasi-rigid hypothesis used in
arterial research does not apply. Moreover, healthy veins of the leg have valves to
keep the blood circulation oriented towards the heart, preventing backflows. Finally,
the veins of the leg have a dynamic environment as a consequence of the contractions
of the surrounding muscles.

Muscular contractions play an important role in venous return because they
compress the deep veins of the calf. When this compression occurs the distal valve of
the deep vein as well as the valves of the perforating veins closes. Blood is then ejected
towards the heart. When the compression relaxes a reduction of pressure takes place
in the deep veins and blood is aspirated into these veins through the perforating veins
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located in the muscle compartments. The compression–relaxation mechanism reduces
the intravenous pressure preventing the occurrence of high ambulatory pressures. In
particular, this ‘muscular pump’ is responsible for the reduction of the ambulatory ven-
ous pressure (AVP). The AVP is defined as the minimal internal pressure at the distal
marginal vein (MV), a superficial vein located at the upper surface of the foot, and it
is an important marker of venous disease. When there is an abnormal muscular pump
or valvular incontinence, the AVP rises and produces an ambulatory hyper-pressure.

In order to study these issues, we designed a numerical model of the venous network
of the leg. The model is a system of coupled elastic tubes. Each elastic tube represents
a venous vessel. Flow through the tubes is assumed to be unsteady, incompressible
and one-dimensional. The fluid–structure interaction between the flow and the wall
is modelled by a relation between tube area and the difference between internal
and external pressures. This relation, called the tube law, can be given a priori in
analytical form or fitted from experimental data. We assume that, provided with a
correct tube law, the one-dimensional numerical system can represent flow dynamics
in a vessel. There have been numerous studies of flow in elastic and collapsible tubes,
with applications to flows through arteries, veins, bronchi or the urethra (Griffiths
1971; Young & Tsai 1975; McClurken et al. 1981; Jan, Kamm & Shapiro 1983;
Elad, Kamm & Shapiro 1987; Kamm & Pedley 1989). These flexible-tube models
have been successfully compared to controlled experiments (Kamm & Shapiro 1979;
Jan et al. 1983; Fullana et al. 2003; Cros 2003) where experimental data on flow rate
and pressure were compared to numerical solutions. On the lower leg in particular,
numerical simulations of the external compression activity can be found in Kamm
(1982) and Dai, Gertler & Kamm (1999).

Our numerical network also includes a model of muscular activity and a model
of valve activation. Muscular activity and valves are specific and important features
of the venous network, whereas they are not needed, for instance, in a model of the
arterial network. We define a few ‘compartments’ or zones containing muscles with
the same muscular activity. The choice of compartments attempts to match human
physiology. Valves are necessary to keep the blood flow in the right direction. They are
present in each segment of the leg: in vertical segments to let the blood flow from the
foot to the heart and in horizontal segments to collect the superficial circulation into
the deep network. We also define a new approach for branching points or confluences.
In our formulation, they are modelled as a soft tank with n entries or branches each
corresponding to a venous segment.

The paper is organized as follows: in § 2 we describe the mathematical models
for a single vessel, a confluence, a valve and for muscular activity. We also describe
the venous network and its boundary conditions. Numerical results are presented
in § 3 where we study the confluence model, the wave reflection at the confluences
and the exit condition of the network. Then we compute network solutions using an
experimental venous law, and compare numerical results to experimental data for a
tiptoe. We also describe numerical predictions for the internal pressure at the foot
level in a valvular incontinent system.

2. Models
2.1. Vessel model

We assume an unsteady, incompressible one-dimensional flow through a collapsible
tube. The length scale for the variation of the tube cross-section shape, velocity and
pressure is large compared to the diameter of the tube. This assumption may fail in
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some cases, for instance near the ends of the tubes where they attach to the confluences.
However, these regions are limited in size and the simplification is so useful that it
is very difficult to consider an alternative. Moreover, detailed comparisons between
experiments and numerical simulations support this assumption (Fullana et al. 2003).
This also means that transverse variations of pressure are neglected.

Therefore, we consider the flow as one-dimensional along the axis x: the pressure
p(x, t) and the velocity U (x, t) are averaged values of the local variables over each
cross-section. We note A(x, t) the area of the cross-section at x and t . Longitudinal
non-uniformities in the tube shape result in gradients of the area A(x, t).

The governing equations for the fluid flow express conservation of mass (Shapiro
1977)

∂A

∂t
+

∂

∂x
(AU ) = q, (2.1)

where q = q(x, t) is the source term that corresponds to the microcirculatory flow.
Conservation of momentum gives

ρ
∂U

∂t
+ αρU

∂U

∂x
= −∂p

∂x
− ρg sin θ − fv, (2.2)

where ρ is the density, g is gravity and θ stands for the angle between the tube
axis and the horizontal. The coefficient α depends on the velocity profile in the tube.
For a uniform velocity profile as expected at high Reynolds number with negligible
boundary layers α = 1, while for the axisymmetric Poiseuille flow expected at low
Reynolds number α = 4/3. However at small Reynolds number the nonlinear, inertial
term is small compared to the viscous term. As a reasonable simplification we set
α = 1. A derivation of (2.2) is given by Anliker, Rockwell & Ogden (1971) or
Quarteroni & Formaggia (2003).

The viscous effects are included in fv , which may be obtained from solutions of the
Navier–Stokes equations for parallel flow in tubes of given cross-section (Cancelli &
Pedley 1985). For example, for laminar flow (Re < 4000) and A > A0 the momentum
loss is fv = 8πμA−1U . For the laminar flow and A < A0, if the tube is assumed to have
elliptic cross-section then fv = 8πμA0A

−2U where μ is the fluid viscosity (Wild, Pedley
& Riley 1977). A remarkable, and probably unrealistic feature of this expression for
fv is that it diverges for A → 0. Thus we use instead a semi-analytical expression
given by Ribreau, Naili & Langlet (1994). It assumes cross-section shapes deduced
from thin-shell theory. Ribreau’s expression involves a simple polynomial function
F, which is chosen so that it yields a good fit to experimental data. In this model
fv(A, U ; μ, A0) = (8πμU/A)F(A/A0) where

F =

⎧⎪⎨
⎪⎩

ac, if A < Al,∑3
n=0 an(A/A0)

n, if Al < A < A0,

1, if A > A0,

(2.3)

where ac, a0, . . . , a3 are scalar coefficients, which are constrained so that F is
continuous. For instance

∑3
i=0 ai = 1 so that F is continuous at 1. The value Al

is computed from the osculatory pressure when contact occurs along a straight line
between opposite parts of the vessel walls. The values of (ac, Al/A0, a0, a1, a2, a3) are
given by Ribreau et al. (1994) for different values of the initial ellipticity, the ellipticity
being the ratio between the minor and major axes. For our case, the value of initial
ellipticity is 1, and (ac, Al/A0, a0, a1, a2, a3) = (31.92, 0.21, −0.91, 9.35, −12.99, 5.55).
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(It should be noted that the region A < A0 is seldom relevant: the veins of the leg
are usually inflated because of hydrostatic pressure.)

To close the system of equations (2.1) and (2.2), we use the mechanical characteristics
of the veins. In this paper, we work with two different approaches: an analytic relation
for elastic tubes used for numerical tests and validations on the one hand and an
experimental relation used for experimental comparisons on the other.

The analytic tube law is described by

p − pe = KpP (A), (2.4)

where Kp is a constant proportional to the bending stiffness and pe is the external pres-
sure. Additional physical effects such as the inertia of the surrounding tissue, or their
viscosity, may be modelled in the tube law, which then becomes a differential equation.

The function P (A) represents the effect of transverse stresses. Usually we write

P (A) =

{
A/A0 − 1, if A/A0 > 1,
2
3
[1 − (A/A0)

−3/2], if A/A0 < 1,
(2.5)

where A0 is the cross-sectional area at p−pe = 0. A closely related concept is the com-
pliance C = dA/dP . When dilated (A > A0) the tube has circular cross-section and
constant compliance. The tube starts to collapse at A = A0. As A decreases the tube
becomes increasingly elliptical and compliance steadily declines. As the collapse intens-
ifies, opposite sides of the wall come into contact and two parallel conduits are formed.
Compliance falls further and the cross-section is reduced in size but the pressure
remains self-similar of the form P (A) � −(2/3)(A/A0)

−3/2 (Fung 1996). The tube law
determines the speed c =

√
A(Kp/ρ)dP/dA of small perturbations (see the Appendix).

For the experimental tube law, a clinical procedure was developed to determine
the relationship P (A) for each vein type in the deep and superficial bed (Bassez,
Chauveau & Flaud 2001). A transverse echographic scanner was used to measure
the cross-section area A for different external pressures pe. The measurement data
allow to build a tube law for each vein. We expect the use of the experimentally
determined tube law to considerably improve the realism of our model, and to be
critical in the ability to obtain satisfactory comparisons between clinical studies and
model predictions.

2.2. Confluence model

A confluence model is a manner to couple the fluid-dynamical equations (2.1–2.2)
describing the segments connected through the confluence. Since the fluid-dynamical
equations are hyperbolic and of second order, the solution of the equations in the
segments requires one boundary condition for each characteristic line entering the
segment. In the subcritical regime, this means one boundary condition on each side of
the segment. Thus, at a confluence with n branches, one must determine n quantities,
one for each segment. The simplest way is to use one condition for the conservation
of mass and n − 1 for the conservation of energy. For example, for a three-branch
bifurcation we have from conservation of mass

q1 + q2 + q3 = 0, (2.6)

where qi = AiUi at the bifurcation, and the Bernoulli-type conditions

p1 + ρU 2
1 /2 = p2 + ρU 2

2 /2, (2.7)

p1 + ρU 2
1 /2 = p3 + ρU 2

3 /2, (2.8)



188 J.-M. Fullana and S. Zaleski

q1 pC

q2

q3

VC

Figure 1. Model of confluence with three branches. Each flow rate qi is computed from the
difference between pressure at the confluence centre and pressure in neighbouring vessels. Mass
conservation yields the confluence volume VC . The confluence pressure pC is determined from
VC assuming a compliant wall.

which state that the three stagnation pressures are equal. In this ‘energy-conserving’
approach head losses are neglected, and many authors have discussed the need to
add a model for these losses.

There is a large literature on confluences, some of which is motived by research
on arterial flow: Stettler, Niederer & Anliker (1981); Stergiopulos et al. (1992);
Olufsen (1999, 2000); Olufsen et al. (2000b); Wan et al. (2002); Sherwin et al. (2003);
Bernhard et al. (2005). These papers provide numerous examples of the behaviour of
the dynamical variables (area, velocity and pressure) across the confluence.

To estimate the singular head losses, we can refer to the work of Cros (2003). He
has done numerical simulations of confluences of rigid pipes for different angles and
diameter ratios and the conclusion was that in the leg’s venous network the singular
pressure head loss can be neglected (angles in the leg run between 10◦ and 45◦, except
for the perforating veins which have an angle of 90◦ but a very small velocity, and
the diameter ratios are on average close to 1). This conclusion agrees with Olufsen
et al. (2000b) where a non-zero loss coefficient was used only in the bifurcation from
the ascending aorta in the aortic arc.

Our formulation differs from the previous ones in the literature, as in our case
the confluence is an elastic tank of small size. This tank has n entries or arms
each corresponding to a segment of the network. A confluence is characterized by a
volume VC , a pressure pC and its entry flow rates q1, . . . , qn (figure 1). This description
needs to be connected to the discretization of each neighbouring segment, which we
will describe below together with the numerical method. This new approach to the
modelling of confluences could be applied to any network of elastic tubes, including
arterial networks.

2.3. Valve model

In the general circulation the vein valves are necessary to keep blood flowing towards
the heart and against the force of gravity. Mathematically, valves are singular points in
the circuit, allowing a pressure jump across that point. Figure 2 shows a simple sketch
of valve behaviour. In case (a) the local pressure gradient is favourable; therefore the
flow goes naturally towards the heart. In case (b) the flow is stopped, and U = 0 at this
point. Numerically, if one suddenly imposes the singular condition U = 0 numerical
instabilities may be produced. Moreover, echo-Doppler investigations show that real
valves allow a small reflux or backflow. We modify the equations to include a very
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P+ P– P+ P–

Figure 2. Sketch of valve behaviour. (a) p+ > p−; (b) p+ < p−.
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Figure 3. Two-dimensional diagram of the network of the lower limb. GSV, great saphenous
vein; SSV, small saphenous vein; PV, peroneal vein; FV, femoral vein; CFV, common femoral
vein and DFV, deep femoral vein. Arrows represent the location of the microcirculatory
contribution, the two main contributions are those coming from the foot (zero altitude) and
the thigh (DFV).

large, but not infinite, resistance to backflow through the valve. It will be convenient
to use the indices + and − to denote values at points above and below the valve. Then

p+ − p− = −ρKvalveU, (2.9)

where U is the local velocity at the valve point, and Kvalve is a very large coefficient
representing the resistance when flow is forced in the ‘forbidden’ direction. This
model yields a small residual reflux.

2.4. Topography of the network model

To obtain a model reflecting accurately the real venous topography, a vein is
sometimes composed of several model venous segments. Each segment links a pair
of nodes. The model topology as well as the length and diameter of each vein was
based on literature data (Avolio 1980). The network is depicted in figure 3 where the
altitude in cm and the corresponding zones in the leg: foot, calf, knee and thigh are
shown on the left and the right, respectively.
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Veins Distal (cm) Proximal (cm)

Great saphenous vein (GSV) 0.30 0.55
Peroneal vein (PV) 0.20 0.80
Small saphenous vein (SSV) 0.20 0.30
Common femoral vein (CFV) 0.85 1.00
Femoral vein (FV) 0.80 0.85
Deep femoral vein (DFV) 0.50 0.80

Table 1. Distal and proximal diameters of principal veins at zero transmural pressure.

From the plantar veins (marginal veins, MV), two superficial beds were defined as
the great saphenous vein (GSV) and the small saphenous vein (SSV) on the left and
the right of figure 3. The GSV was duplicated at the calf level giving the anterior
accessory vein (AAV). The two superficial beds were connected to the deep network
by the perforating veins (the horizontal segments). From left to right in the calf region,
the full list is: GSV and AAV, tibial posterior vein (TPV), peroneal vein (PV), soleus
vein (SV), two gastrocnemius veins (GV), tibial anterior vein (TAV), and finally the
SSV. For the perforating veins, we have taken into account only the valvulated direct
perforating veins of the largest diameter. The upper part of the network (the thigh
model) was represented by the femoral branches: the femoral vein (FV), and common
femoral vein (CFV), and by the deep femoral vein (DFV). The vein diameters of our
standard network are given in table 1.

2.5. Muscular pump and pulsating influx to the model

Muscular contractions have two main effects. These contractions modify the stresses
on the outer surface of the vessels. In some cases the effect is to modify the cross-
sectional area of the vessels. This effect can be modelled by an increase in the external
pressure of the tube law. The contractions also cause a fluid-mass influx coming from
the blood pool of the muscular compartments. It is modelled by an increase in the
source term q(x, t) in the mass equation (2.1). We describe these two effects in turn.

The effect of the muscular contractions on the tube law can be modelled by a
function PM (x, t) added to the external pressure pe in (2.4),

p − pe = P (A) + PM (x, t). (2.10)

From surface electromyography (EMG) measurements, we can approximate the
shape of the function PM (x, t) (Alimi, Barthelemy & Juhan 1994). For numerical
computations, we use two kinds of functions PM (x, t) (a) an impulse function
to analyze the mechanical response of the network, and (b) an experimental
function PM (x, t) coming from invasive pressure measurements of various muscular
compartments (Maton et al. 2006a). We define three such compartments in the calf
region (see figure 3):

(a) the tibial posterior compartment LPP (segments TPV and PV between the foot
and the knee till the poplitean vein (PoV) including the corresponding perforating
veins),

(b) the compartment including the muscle soleous and gastrocnemius, LPS
(segments GV and SV between the foot and the knee till the PoV including the
corresponding perforating veins),

(c) the tibial anterior compartment, LAE (the TAV segment between the foot and
the knee till the PoV).
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Modelling the increase in the source term q(x, t) is performed by making it
proportional to the function PM (x, t) described above.

2.6. Boundary conditions

The network has one influx condition and one exit boundary condition:
(a) for the venous flow coming from the microcirculation, from the muscular veins

and the foot veins we suppose an inflow distribution along the network (at the foot,
ankle and thigh level as shown by the arrows in figure 3), and we use the flow-rate
values from the literature. In the simulations the total flow rate is set to 220 ml m−1.

(b) the exit condition (at the CFV, the segment CFV in figure 3) is modelled by
a virtual cava vein (not shown in figure 3) extending from the last node of the
network to the heart. The heart pressure is maintained constant at 5 mmHg and
the venous law (2.4) is modelled by a progressive neutral area A0 growing from the
distal to the proximal site. This approach avoids the wave reflections which would
occur if we imposed a constant exit pressure. The imposed heart pressure attempts
to model the actual right atrium pressure at the ‘hydrostatic indifferent point’. At
this point the pressure is not altered by postural changes and has small temporal
variations (Guyton & Jones 1973). Considering no pressure variations in the vena cava
and heart is nevertheless an approximation that we make. Adding some variations
from breathing for instance could help explain some of the pulsatile character of
the pressure measurements. However, in our approach, the pulsatile character of the
model is ensured only by the muscular contraction model. In other words there is no
pulsatile ‘pulling’ on the system, only pushing and squeezing.

3. Numerical results
3.1. Numerical method

The mathematical similarity with gasdynamics allows to reuse standard numerical
methods. The classical MacCormack method (MacCormack 1969) has been
developed for systems of conservation laws. It is a two-step predictor–corrector
technique, with the following characteristics: it has an explicitly conservative form,
and it uses a three-point spatial stencil and two time levels. It is second-order
accurate in time and space. An approximate solution is obtained in the first step and
then corrected in the second. This method of integration for hyperbolic equations
was compared with others in Kimmel, Kamm & Shapiro (1988) and Elad et al.
(1991). Though the choice of the difference approximation is not unique, in Peyret
& Taylor (1983) a general formulation mixing forward and backward differences is
used.

3.1.1. MacCormack scheme

We recall the MacCormack scheme. Equations (2.1–2.2) can be rewritten as

∂tQ = F (Q), (3.1)

where the vector of unknowns is Q = (A, U ) and the term on the right-hand
side contains derivatives with respect to x. The segments are discretized so that
Qi(t) = Q(i�x, t), where �x is the mesh size. In this subsection, the indices i are
increasing towards the heart. Derivatives inside F are discretized using biased finite
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differences so that a backward-biased discrete approximation to F at point xi = i�x is

F −
i =

( −(AiUi −Ai−1Ui−1)/�x

−(U 2
i −U 2

i−1)/(2�x) − (pi −pi−1)/(ρ�x) − g sin θi −fv(Ai, Ui)/ρ

)
, (3.2)

where the pi values are computed from the Ai using the tube law. The corresponding
forward-biased derivative is noted F +

i . Discretization in time is achieved by letting
Qm

i = Qi(m�t) and

Q∗
i = Qm

i + �tF +
i (Qm), (3.3)

Qm+1
i = (Qm + Q∗)/2 + (�t/2)F −

i (Q∗). (3.4)

3.1.2. Confluence scheme

Near the confluence, we note the values such as U0,k, A0,k at the nearest node from
the confluence in branch k. In this subsection, we use spatial indices i increasing away
from the confluence, so that velocity is counted positively when leaving the confluence.
A problem arises when applying the MacCormack scheme at the (0, k) nodes because
A−1,k, U−1,k are not defined. However, for all branches k we will take p−1,k to be the
confluence pressure pC , and U−1,k to be zero in the momentum equation. In the mass
equation (that yields the derivative ∂tA0,k), the procedure is different and is explained
below. First, we determine pC as follows. The confluence volume is determined by
mass conservation

∂tVC =

n∑
k=1

− U0,kA0,k + qmicro (3.5)

where qmicro stands for the microcirculatory contribution represented by arrows in
figure 3. Second, the confluence pressure pC is given by a volume law analogous to
the vessel tube law

pC = pe + KCPC(VC/V0), (3.6)

where PC is a function that describes the compliance of the confluence. It is obtained
by averaging the tube laws (2.4) of the neighbours. Moreover, V0 is the reference
volume for a given confluence. Finally, the constant KC allows to adjust the confluence
compliance, it is in general set to one, but it could be changed for instance to study
a soft confluence coupling rigid veins. Below we will demonstrate by numerical
simulations that the local dynamics is very sensitive to the reference volume V0.

The mass equation cannot be solved with the backward-biased scheme because
U−1,k is not defined. We thus determine A0,k by interpolation. A first method is to
interpolate between the sections

A0,k =
1

2

(
A1,k + A0

VC

V0

)
. (3.7)

A second method is to interpolate linearly the pressures, then to invert the tube law
to find the section

A0,k = P −1

{
1

2

[
P (A1,k) + PC

(
VC

V0

)]}
, (3.8)

where P and P −1 are the tube law and its inverse, and PC() is the function defined
above. Numerical experiments show that the interpolation (3.8) is preferable to the
interpolation (3.7) as it avoids pressure jumps.
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As it stands, this scheme is consistent with an energy-conserving formulation as we
now show. The above scheme yields in steady state F −

0,k = 0, which implies

ρU 2
0,k

2
+ pk + (g sin θk − fv/ρ)�x = pC. (3.9)

Thus, pC appears to be the stagnation point pressure. In the limit of small �x

ρU 2
0,k

2
+ pk = pC. (3.10)

Thus, in steady state and with negligible head losses our formulation is equivalent
to the energy-conserving approach (2.7). In unsteady situations, it may however be
markedly different because the time derivatives will influence the confluence pressure
and the mass conservation. Moreover, our formulation is not limited to the subcritical
case where only n boundary conditions are needed for n branches, but would be
equally applicable in the supercritical case.

3.2. Results with an analytic tube law

We present some numerical results: first we test the network elements (confluence
volume, wave reflection and exit condition) using an analytic tube law and second we
simulate venous network behaviour using an experimental venous law.

3.2.1. Confluence volume

We now discuss the important point of the confluence volume V0 at zero transmural
pressure. A reference value V0r for the confluence volume is

V0r =

n∑
k=1

A0,k�x, (3.11)

where n is the number of vessels converging into a confluence and �x is the same
grid size used everywhere in the model. We show below the confluence dynamics for
n = 2 and for departures from the reference value, everything being otherwise equal.
The flow is going from left to right and has the form of a simple wave, which in
the linearized approximation is u(x, t) = t − x/c for x < ct and u = 0 for x > ct .
This wave is created imposing a velocity u(0, t) = t on the leftmost node. We use the
following analogy to explain the results: the wave represents a continuous train of
pressure pulses representing each a volume differential δq; at the singular point (the
confluence node) two extreme cases can appear:

(a) the volume V0 is much smaller than the reference volume V0r in (3.11); hence
the volume differential δq carried by the wave creates a variation of the confluence
volume VC which is large compared to V0. The confluence responds with a large
pressure which perturbs the flow. This large pressure creates a source of flow at the
confluence that appears as a perturbation of the wave patterns in figure 4(a);

(b) at the opposite, in the second case V0 � V0r , so the additional volume δq has a
relatively small effect on the total volume V0. The wave is delayed at the confluence
as it takes time to fill the confluence, and a mild reflection of the incoming wave is
seen propagating backwards. Figure 4(b) shows the response of the flow-rate profile
for different times.

When we use V0 = V0r for the confluence volume, the wave passes across without
deformation as shown in figure 5(a). The conclusion is that V0 should be adjusted
depending on the nature of the reflections expected at confluences.
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located at x = 30. The volume is smaller than (a), bigger than V0r (b).
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Figure 5. Two segments with a single confluence in between. (a) Flow rate AU as a function
of position for two vessels connected by a confluence. (b) Pressure profile for two different
times: before and after the confluence crossing. In both cases no wave reflection is seen.

Another point of view on our confluence model is that it is a numerical relaxation
method with a characteristic time τ , which in steady outer conditions will converge
to the classical equations (2.6–2.7). The volume V0 controls the relaxation time τ .
When the period or characteristic time of the wave is much larger than τ , the wave
only ‘sees’ the steady state conditions (2.6–2.7). Large characteristic times τ may give
different results, and correspond to large volumes V0.

3.2.2. Wave reflection

In the Appendix we present a simple linear theory of wave reflection in confluences.
In this section, we present some numerical results on a simple confluence composed of
three segments. We use the analytic tube law (2.5) in the positive transmural pressure
zone in two cases, a rigid compliance and a soft one. The two cases are Kp = 30 kPa
and Kp = 3 kPa. We choose these values from experimental data which result in
estimated values of Kp running between 50 kPa and 3 kPa (Bassez et al. 2001).

We present results for three cases.
(a) Case A: three segments with the same Kp = 30 kPa and the same neutral area

A0 = 1 cm2;
(b) Case B: three segments with the same neutral area A0 = 1 cm2. One of the

daughter segments has Kp = 3 kPa, and the two others have Kp = 30 kPa; and
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Case A Case B Case C

Theory Numerical Theory Numerical Theory Numerical
R −0.333 −0.333 −0.617 −0.617 −0.043 −0.042
T 0.666 0.666 0.382 0.382 0.957 0.958

Table 2. Theoretical and numerical values of the coefficients of wave reflection R and
transmission T ratio in the three cases defined in the text.

(c) Case C: three segments with the same Kp = 30 kPa. One of the daughter
segments has a neutral area A0 = 0.3 cm2 and the two others have neutral area
A0 = 1 cm2.

Using these values of Kp and A0 we computed the iterative admittance β for each
segment from equation (A 6), which in turn allows to compute the ratio T between
the amplitudes of transmitted and incoming waves (A 3) and the ratio R between
the amplitudes of reflected and incoming waves (A 2). Both theoretical and numerical
values of T and R are shown in table 2.

3.2.3. Exit condition

We study wave reflection near the exit point using a simple arrangement of two
segments with one confluence between them. This represents the exit condition, the
top segment representing the CFV placed at the top of figure 3.

The two vessels, vessel 1 and vessel 2, are connected by a confluence. Both vessels
have the same tube law with Kp = 30 kPa and the neutral area A0 = 1, but different
lengths of 40 cm and 30 cm. The initial conditions are u(x, t = 0) = C for all x where
C is some constant.

For the first computation, the boundary conditions are: imposed velocity u(0, t) =
t +C on the input node of vessel 1 and fixed pressure at the exit of vessel 2 creating a
wave as discussed above. Figure 5(a) shows the flow rate in both segments. The flow-
rate wave passes through the confluence without changes. The zone with constant
flow rate on the right of figure 5(a) has not yet been reached by the wave. We have
also tested velocities larger than the physiological ones, and numerical results confirm
that the numerical scheme is stable and suitable for the proposed model.

In a second computation, we impose a pressure pulse at the input node of vessel 1.
Figure 5(b) shows the pressure profile at two different times: before and after the
confluence crossing. The pressure pulse is not reflected at the confluence. We compute
the reflection coefficient R and transmission coefficient T from (A 2) and (A 3) with
two segments (therefore β3 = 0) with β1 = β2, and we have T = 1 and R = 0. These
values of T and R are consistent with the numerical solutions. Moreover, T and R

were recomputed using the theory in (A 2) and (A 3), and using values of A0,k and
c0,k computed at the confluence from the simulations. The result again agrees with
the simulations.

3.3. Results using experimentally measured tube laws

In this section we use the full network and venous-tube laws obtained from the in
vivo measurements of Bassez et al. (2001).

3.3.1. Network response

We simulate the action of the local foot pump by imposing a transient mass influx

q(t) = C[1 − cos(πt/T )] (3.12)
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Figure 6. Comparison between two different imposed transient flow rates at entry. A transient
flow rate of duration T = 0.1 s (upper) and T = 1 s (lower) (see text) is imposed at the foot
level and shown in the figure. The corresponding responses (flow rates at the exit) are also
shown. Vertical scale in arbitrary units.

for 0 < t < 2T and q = 0 otherwise, with C an arbitrary constant. Two cases are
shown, one with T = 0.1 s and the other with T = 1 s. The influx is located at the foot
level, specifically at the MV (see figure 3). Figure 6 shows the imposed mass flux rate
q(t) and the flow rate at the exit of the network for the two cases. Figure 6 shows that
in the T = 0.1 case the deep veins are also excited and produce a second frequency in
the response signal. This two-frequency response corresponds to a double-oscillatory
system composed by the lower and upper limbs. The characteristic frequencies are
closely related to their characteristic lengths. The numerical solution shows how the
foot pump could play the role of an assistance system for the main heart pump by
exciting the oscillatory system at the right frequency. Indeed, the networks of the upper
and lower limbs can be considered as two weakly coupled systems. This prediction
of a second frequency agrees with observations of physiology. Experimental data for
dorsal flexion for a supine man from the clinical study of Maton et al. (2006b) show
a second frequency that is not present in the muscular activity (figure 7). However,
the manner in which the system is excited differs in the study of Maton et al. (2006b).

3.3.2. Experimental comparison

We now show the numerical predictions of our model for a tiptoe movement
(straining upward on the tips of the toes). In a tiptoe movement many compartments
are activated. We have experimental data on three different compartments: the
tibial posterior compartment (LPP), the compartment including the muscle soleous
and gastrocnemius (LPS), and the tibial anterior compartment (LAE). Figure 8
presents the temporal evolution of the intramuscular pressures (in mmHg) for the
compartments. The muscular activity was measured by an invasive technique with
a protocol approved by the Ethical Committee (CCPPRB Marseille I-No 02/19), a
description of the protocol is given by Maton et al. (2006a).

The three pressure signals PM are imposed in the corresponding compartments via
(2.10). Figure 9 shows the flow rate at the exit at the Common Femoral Vein (CFV
in figure 3) for the experimental data and its numerical prediction.



A branched one-dimensional model of vessel networks 197

17

18

19

20

21

22

23

24

25

26

27

0 0.5 1.0 1.5 2.0 2.5 3.0

P
re

ss
ur

e 
(m

m
H

g)

Time (s)

Pressure VoP
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Figure 8. Muscular activation for the three compartments: the tibial posterior compartment
(LPP), the compartment including the muscle soleous and gastrocnemius (LPS), and the tibial
anterior compartment (LAE). Pressures are in mmHg.

For 2 s the two principal compartments LAE and the LPS dominate the dynamics.
Even if LPS has greater values of pressure (maximum about 70 mmHg), the total
volume of the LAE compartment is greater which makes LAE dominant in the
dynamics. The sharp rise in flow rate at time 1.5 s is well modelled, but at later times
the numerical results are less predictive.

At least two explanations may be advanced for the poor predictions: (i) the
measurement point (CFV in figure 3) is far from the activated muscles and
the experimental flow rate may be polluted by (a) wave reflections occurring at
heterogeneities or confluences that are not modelled, and (b) spontaneous muscular
activity, i.e. breathing, and (ii) the muscular activity of the thigh is not modelled in our
approach. It may however be important due to its vicinity to the measurement point.



198 J.-M. Fullana and S. Zaleski

–10

–5

0

5

10

15

20

25

30

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

F
lo

w
 r

at
e 

(c
m

3  
s–

1 )

Time (s)

Data

Simulation
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Figure 10. Temporal variation of the pressure at Popliteal level with respect to the pressure
baseline. Experimental data (crosses+line) and numerical results (pluses+line).

Figure 10 shows the temporal variation of the pressure at the Popliteal level with
respect to the pressure baseline (the hydrostatic pressure) for the experimental data
and the numerical predictions. In this case the measurement point is located near the
muscular activity (PoV at the knee level in figure 3) and the numerical predictions of
the model are clearly improved.



A branched one-dimensional model of vessel networks 199

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

A
V

P
 (

m
m

H
g)

Time (s)

Normal
Super + Perf
Deep + Perf

Figure 11. Time evolution of the ambulatory venous pressure (AVP): normal, superficial axis
without valves and deep axis without valves. Pressure is in mm Hg; time is in seconds. The
speed at which the pressure increases at the end of the walking sequence is an important
marker of venous disease.

3.3.3. Predictions on incontinent networks

Finally, we present results on ambulatory venous pressure (AVP) in a protocol of
10 tiptoes. The AVP is defined as the minimal internal pressure at the distal Marginal
Vein. It has higher values when the muscular pump is not functioning properly, for
instance in case of valvular incontinence.

Figure 11 shows three cases: normal, with the superficial axis incontinent and
with the deep axis incontinent. In a standing subject the AVP baseline is around
90 mmHg depending on the subject’s height. During muscular activity it should fall
to around 30–40 mmHg. In a protocol of 10 tiptoes, the largest pressure decrease is
done for the 2–3 first movements, and the pressure becomes stable to give the AVP.
Another important observable is the refilling time, the required time after muscular
activity stops to reach the AVP baseline. Patients with muscular impairment or valve
incontinence are hardly able to reduce the AVP and have a short refilling time. In a
schematic manner, severe illness is correlated with a high AVP, a short refilling time
and large pressure oscillations.

The numerical results agree with clinical data which show a rise in the AVP with
the degree of incontinence (Nicolaides & Zukowski 1986). These results are used to
design optimal compression profiles that reduce the ambulatory hyper-pressure by
two mechanisms (i) increase of the viscous resistance, and (ii) restoration of valve
functionality by the compression. This is one of the main applications of the present
theoretical and numerical model.

4. Conclusion
We have described a theoretical and numerical model for simulating a circulatory

network. The simulated network is a relatively detailed representation of the principal
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veins of the leg. The topology of the network, the length and the diameter of the
veins were based on literature data.

The model is based on a classical elastic tube approach, and the implementation of
numerical confluences, valvules, and muscular activity. The flow through each elastic
tube is assumed to be unsteady, incompressible, and one-dimensional. The resulting
system of nonlinear equations is written in conservative form and solved using a
MacCormack scheme.

We have presented a study of wave transmission and reflection in some simple
configurations. Numerical results on reflection and transmission coefficients for two-
way and three-way confluences are in agreement with theoretical results.

We investigate the system response to a transient entry flow rate modelling the foot
pump. The system output shows two frequencies which are related to the lengths of
the typical veins. We compare numerical results with experimental data for a single
tiptoe movement. We report numerical predictions for the internal pressure at the
foot level in a valvular incontinent system which agrees with clinical observations.

Improvements to the approach would involve a better modelling of singular
head losses at confluences, a deeper study of wave reflection at confluences with
comparisons to physiology and taking into account non-Newtonian characteristics of
the blood. Indeed the one-dimensional approach ignores three-dimensional effects such
as recirculation and secondary flows. This implies that the energy losses are not taken
into account by the one-dimensional equations. However, empirical singular-head-loss
coefficients could be used to avoid this pitfall. The non-Newtonian characteristics
of the blood could also be taken into account using a constitutive model for
viscosity.

One of the contributions of this study to physiology is that it reveals the importance
of oscillations in the pressure and flow rate. We see them in figures 6, 9 and 10. It
is possible to explain some, but not all, of these oscillations by a simplified network
such as ours, which implies that part of the explanation for these oscillations lies in
wave propagation in the venous segments and their reflection at major confluences.
The reflections we model follow the simple laws arising from the linear theory. There
are probably more mechanisms for reflection than we have included in the present
model, which could be an interesting point for further study.

Considering the overall structure of predictions and measurements in figures 9
and 10 and disregarding the short-time oscillations, we often find good quantitative
agreement with the measurements. This is an indication that the model reproduces
correctly the basic mechanism of the muscular pump of the leg: muscle contractions
and valvules push blood towards the heart. This is an important result, paving
the way for an estimate on the efficiency of various compressive devices. The
model is actually used at the time of writing to define new pressure profiles for
compression stockings so as to provide specific medical benefits in the case of valvular
incontinence. This approach may also be used in medical planning, in particular in
the definition of a protocol of clinical trials using the compression devices.

New therapies are appropriate if their risks and benefits compare favourably to
those of a reference therapy. Our model can help both to estimate risks and assess
benefits. Indeed numerical methods are well suited to the investigation of the venous
flows of the lower leg because these flows are difficult to assess using in vivo techniques.
Therefore numerical predictions may be useful in evaluating the different blood flows
and the clinical measurables (reflux, AVP) that result from the application of different
compressive stocking profiles on the lower leg.
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Appendix: Wave solutions
This appendix is based on Comolet (1984) and Lighthill (1989). Without loss of

generality we may consider the governing equations without gravity or viscous term
and with pe = 0

∂tA + ∂x(AU ) = 0,

ρ∂tU + ρU∂xU = −∂xp,

p = KpP (A).

The equations are linearized by considering small perturbations around the state
U = 0, A = A1, where A1 is some reference area. Then

∂tA + A1∂xU = 0,

∂tU = −Kp

ρ

dP

dA
∂xA.

Eliminating U one obtains the wave equation

∂2
t tA − c2∂2

xxA = 0,

where

c2 =
A1Kp

ρ

dP

dA
.

The same wave equation is obeyed by p and by the flow rate q = AU . The general
solution can be written as

F = f (t − x/c) + g(t − x/c).

In particular, if we have

p = f (t − x/c) + g(t − x/c),

we find that

q = β [f (t − x/c) − g(t − x/c)] , (A 1)

where β = A/c is the iterative admittance. We can compute the wave reflections
across the confluence. At the connection between the confluence and vessel 1, we have
the incident wave f (t) and the reflected wave g(t) so

p1 = f (t) + g(t),

q1 = β1(f (t) − g(t)),

and for vessels 2 and 3 we have only the transmitted waves h2(t) and h3(t),

p2 = h2(t),

q2 = β2h2(t),

p3 = h3(t),

q3 = β3h3(t).

Because the equations are linearized assuming small-enough velocity and area
perturbations, any nonlinear term in the confluence equations disappears. Thus,
we can simplify the relations at the confluence by considering pressure continuity
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p1 = p2 = p3 which yields

f (t) + g(t) = h2(t) = h3(t),

and implies that h2(t) = h3(t) = h(t). Mass conservation gives

β1(f (t) − g(t)) = (β2 + β3)h(t).

Using the two previous equations we can compute the ratio between the transmitted
and reflecting waves. We have the reflection coefficient R

R =
g(t)

f (t)
=

β1 − (β2 + β3)

β1 + β2 + β3

, (A 2)

and the transmission coefficient T

T =
h(t)

f (t)
=

2β1

β1 + β2 + β3

. (A 3)

From the analytic tube law (2.4 and 2.5) in the positive transmural pressure region

p = Kp(A/A0 − 1), (A 4)

and we can compute the area values at the confluence where the pressure is known

A1/A0 = p/Kp + 1. (A 5)

Therefore, the iterative admittance β = A1/c is now (using c2 = (A1/A0)Kp/ρ)

β =
A1

c
= A0

[ρ(p/Kp + 1)]1/2

K
1/2
p

. (A 6)
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